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Exact analytic expression for Green's function of the Helmholtz equation for the 
half-strip and boundary conditions that contain high order derivatives is obtained 
by the method of expansion in terms of plane waves. This problem arises in the 
determination of the acoustic field created by a point source in a plane semi- 
infinite acoustic waveguide with thin elastic walls, and also inside an infinite 
acoustic waveguide with a thin elastic baffle. 

1. S t & t e m 6 n t  o f  t h e  p r o b l s m .  E x a m p 1 8 8 ,  We seek the solution of the 
problem 

(A -~- k ~) P ( x ,  y) = - -  6 ( X - - X o ,  y - -  Yo), O,~x<oo, O < y < h  (1.1) 

L . P ( x , y ~ ) = O ,  O<x<:,o a = t , 2 ;  y l = 0 ,  y2=h (1.2) 

L3P(O, y ) = 0 ,  0 < y < h  (1.3) 

0 0~ 

where P is the acoustic pressure in the medium, A m the Laplace operator, k is the 
wave number, the time dependence is specified by the factor e -i'~t which is omitted 
throughout, m ~  are polynomials of their arguments whose coefficients are indepen- 
dent of space coordinates z and y. In the considered region the sought solution must 
be coGtinuous up to the boundary, with the exception of point. (x 0, Y0) of location of 
the source, and must satisfy the principle of ultimate absorption. 

For the simplest Dirichlet or Neumann boundary "conditions the considered problem 



has a unique solution whose derivation by the method of images is elementary. Forboun- 
daty operators of order higher than unity the solution loses its uniqueness and contains 
AT arbitrary constants. The number of these constants can be determined by formulas 
[1, 21 

N = NO) + N(2) (1.4) 

NO) = E ( NI + N3 -- t ) N(2) = E ( N2 + N3 - t ) 

where N a  ((~ --= t ,  2, 3) is the differential order of operator Le  and E (x) denotes 
the whole part of number x. 

The arbitrariness of solution is eliminated by supplementing the statement of the prob- 
lem by N boundary-contact conditions that specify the mechanical mode at conditional 

points of region (R~ a -~- S~ a) P (0, Ya) = 0 (1. 5) 

R ; P ( O ,  Ya)= l im I ( - - t ) a+ l r ; 1  ( - Ox]Oy - ~ - r , 2 ( - - i T z ) ] P ( x , y ~  ) 

l im - -  -g;)S~l (-W) s" 
I/--¢ya 

[~ = t,  2, .  •. ,  N (a), a : t ,  2 

where r ~  " and s~  ~ (~? = t ,  2) are polynomials of their arguments. 

l Y (2) 
!/'- t~ I c~) ( .1 CZo¢o) 

(0 
Fig. 1 

E x a m p l e  1. The field of a point source in a semi-infinitewaveguidewithwaUs in 
the form of elastic plates wh~e motions are purely flexural is defined by Fig. 1. 

) 0 (10) 
(o4 ) o  p,o2 /-'3= ~ - - k 3  4 ~+~'8,  % =  h,~ 

where k a are wave numbers of flexural waves in the plates, 9 is the density of the acous- 
tic medium, and D a is the torsional rigidity of plates (~ ~--- t ,  2, 3). 

We assume that the plates are rigidly connected to each other at points (0, Ye). In 
that ease the bonndary-contact conditions are 

O (x, y~) --= l im a l im ~ - P  -~x P (0, y) = 0 (1.7) 
~¢--*0 I/--~ct 

l im P (x, y~) + l im ~ t9 (0, y) = 0 (1.8) 
ac--~ ll--*l/a 

03 
(--t)~D,~lim-----~--~ P (x, y~) q- D3 l im ou--gT~z P ( 0 ,  y) = 0 (a = t .  2} (1.9) x---~ Ox2 Oy ~-~u:~ Oy "0 

Condition (1.7) implies the absence of displacements at plate connections, (1.8) implies 
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the invariance of the angle between plates, and (1. 9) implies the absence of external 
torsional moments at plate connections. The over-al l  number of boundary-contact con- 
ditions in in conformity with (1.4) equal eight. 

E x a m p l e  2. The field of a point source in an infinite waveguide with elastic wails 
is covered by an elastic baffle rigidly connected to the wails. As in Example 1 we as- 
sume the motions of plates to be purely flexural. We have to find the solution of Eq. 
(1. 1) for x =/= 0 and 0 < y < h which satisfies boundary conditions (1. 2) fo rz  4= 0 
and the matching conditions for x = 0 and 0 < y < h which define the continuity 
of normal displacements at the plate-acoustic medium interface and the balance of 
forces acting on the plate 

a O o--~p(-o, y) = - ~ - p  (+  0, y) 

( - o ,  = 

~3 [P (-- 0, y) - -  P ( +  0, y)l 
After separation of the acoustic field into even and odd parts with respect to the va- 

riable x ,  the problem reduces to two independent problems of the considered type. 

2.  S o l u t i o n  o f  t h 8  p r o b l e m .  The solution derived below satisfies all requi- 
rements of the problem with the exception of the boundary-contact conditions. It is 
sought in the form p (z, y) = Po (x, y) + P* (z, y) (2.1) 

t i exp (,k (x--  =d - -  ~ I y - -  yol) ~¢ ~ (9.. 2) Po (x, y) : 4~ 
- - O o  

where function P0 (x, y) represents the field of a point source at coordinates (x0, Yo) 
in an unbounded medium. The notation y = ] / r ~ ,  is used in (2.2) and tile choice 
of the radical branch is fixed by the requirement that Re  y ~ 0 for I m  ~, --= 0 and 
I m k  > 0 .  

Because the field of source Po is specified by different formulas for y < Yo and 
Y > Y0, it is convenient to seek P *  of the form 

PI(X, y), O < y < y o  
P*  (x, y) = P, (x, y), yo < y < h (2.3) 

P~ (z, y) = ~ [P~ (M e'~v + q~ (M e-'vl e i ~  dZ (2.4) 
,t 'r 

where P~ and qe are unknown functions of the complex variable ~, A is the coutmu- 
ous integration contour p a ~ n g  along the real axis of the complex plane from - - ~  to 
+ c o ,  with the exception of some finite section. The behavior of the contour in that 
section is described below. 

Functions P~*  must in addition satisfy for Y = Yo, 0 < x < co and z =/= z 0 
the matching conaitions 

a-~ (z, (2. ~) 
a 

P** (x, Yo) = P~* (x, Yo), P l*  (x, Y0) = - ~  P ,*  Yo) 

With the use of the boundary conditions (1.2) and of matching conditions (2.5) we 
obtain the following system of integral equations that must be satisfied by the unknown 
functions: 
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where 

! [l~p~e.~h + l Oq~e_.~h + 12Oe_iX~o_r(h_V,)l eiX~ d~ = 0 
.f 

I [lt°pl + l tq l  + ll°e-iXx,-rv*] e ixx d._~._X = 0 (z > O) 
A "; 
I ixx d~. [(P~ - -  PO e~u. -4- (q~ - -  qO e-~o] e ~ = 0 

~ [ (P2  - -  P l )  e'¢l/° - -  (q2  - -  q l )  e-'~I/°] eiL~ d~,  = 0 

l~  (~,) = - -  v m ~ i  (~,~) + m ~  (~,~) 

la ~ (~,) = vm,~l  ( ~ )  Jr- m . ~  ( ~ ) ,  ~ = t, 2 

(2.6) 

Integral equations (2.6) are satisfied if we set 

l~2eva + 12*q~e-.th + l*e-iXx,-'~ (h-V,> = V (D~ + (g) (2.7) 

l~*p~ + llq ~ + lx°e-iXx,-'~vo = ~l>l + (~) 

(P2 - -  P~) e'cu* + (q~ - -  q~)e -'~u* = 27A + (~) 

(p~ - -  pl)e~u* - -  (q~ - -  q~)e -'~* = 2B+ (~) 

where (l)a +, A+ and B+ are functions that are analytic above the contour A. The for. 
mula for P = Po -~ P*  in terms of functions ~ + ,  A+ and B÷ is of the form 

where 

1 i e i~  d~. Po (x, y) -~- P2* (x, y) = " ~  ,~ n (~,) {tla (~, y) (I)1 + (~) "I- 
A 

tl  (~,, y) (I)~ + (k) q-- t2 (k, y) ti (~, Yo) [ e - i x ~ -  B+ (~,)] -I- 

t, (Z,, y ) t i ' (k ,  yo) A+ (k)} ( y o < y < h )  

t I eixx dk {t, (k, y) (1)l + 0 ~) .4_ Po (x, y) + Pl* (x, y) = - ~ -  D (X) 
A 

tl (~, y) (/)~+ (X) + tl (~, y) t2 (~, Yo) [ e- i~ '  - -  B÷ (~)l + 
t~ (k, y) t2' (k, Yo) A+ (k)} (0 < y < h) 

(2.8) 

"~D (~)) = lille vh - -  ll°l~ ° e-vh 
"~tl (~,  Y) = l~ ev~ - -  ll  °e-v"'  "¢t~ (~,, y)  - l~e "¢{h-y} - -  1~ °e-v  ¢h-v) 

a t~ (~, y) t,~' 0,, ~) = W 

Using the boundary condition (1.3) we obtain the followiag systzmof integral equations, 

I ns (~,) d~, {t~ (k, y) (/)I+ (~) + tx 0 ' ,  Y) ~,+ (k) + (:2.9) 
D (~) 

t2 (k, y) t, (k, Yo) I e -~ ' °  - -  B ,  (k)1-4- t~ (k, y) ta' (X, Yo) A+ 0,)} = 0 
(yo < y < h) 

i -,  0.) d~. {t, (X, y) Ox + (>,) + tx (>,, y) 0~+ (X) + t~ (X, y) t,  (~., y,) x 
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[ e - ~ -  B+ (~)l + t~ (~, y) t,' (k, y0) A÷ (~)} = 0 (0 < ~ < a) 

Integral equations (2. 9) are satisfied, if we make the integration contour A symmetric 
about the coordinate origin and set 

n. (~) ( ~ +  (~) = ~(v~ (~,). n~ (~) A+ (~) = ~a (;:) (2. ~0) 

where ~ (~z), A (~) and B 0~') axe even functions of the complex variable )~. 
In accordance withthe theorem of analytic continuation they are entire functions of the 
complex vaxiable ~,. 

For functions P *  (x, y) to be continuous in region x > 0, 0 ~< y ~.< h it is suffi- 
cient if in the neighborhood of an infinitely distant point of the complex plane £ the 
following estimates: 

n s (~) (D~ + (~) = O (~Na+Nt-l-tat) 

as (~) A+ (~,) = o (~,.-1-s.) 

ns (~) B+ (~) - -  ns ( - -£)  e ix~'. = O (£N,-,.) 
are satisfied. 

By the Liouville theorem functions (D~ (~s), A (~s) and B (~l) are polynomials of 
the complex variable ~s and the power of (P a (~,~) is AT (~) - -  t .  

Functions (Da +, A+ and B+ must be analytic above the contour A. Because of this 
the contour A must be chosen so that roots of n s (~) axe below it [2]. Note that 
LsP (0, y),whem P (x, y) is determined by formulas (2.8), is a linear combination 
of ~ (y - -  Yo) and of some of its derivatives. The coefficients of that combination axe 
expressed in terms of coefficients of polynomials A ()~) and B (~s), which means that 
the part of P (x, y) which depends on A ()~) and B ()~) defines the field of point 
inhomogeneity of the boundary, which arises owing to the partitioning of the region by 
the line y ~ Y0. Hence, to satisfy condition (1. 3) it is necessary to equate A (~.s) and 
B 0-1)to zero. 

After transformation the expression for P assumes the form 

P (x, y) = P l  (x, y) ~- P2 (x, y) + Q~ (x, y) -4- Q~ (x, y) (2 .1D 

- -  ( .  12) 

i ~ e*X(~÷=,) ~' ( -  x) t (x, v, v0) dX 

i ~ (~..(~.)V)D ~(~,) (~'~) ~' dX Q1 (x, y) = e t ~  ..t2n, 
l k  

t [ e~ ~ tl (~.. y) ~ 0,2) ~ dk 
O, (X, y) = g.~ ~ n. (X) D (~) 

~f~t (~,, y, Yo) =l l l s  evth-I~-vd) +/1°/~ °e-v(a-lu-~l) - - / l ° / s  evta-u-v') - -  

where P l  is the field of the point source in an infinite waveguide, Ps  is the field of 
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the source image relative to the bounda~/x = 0, and Q~ is the field that radiates from 
angle points (0, y~) of the region. 

The integrands in these expressions do not have branching points for ~ = :J: k and 
are fractional functions of the complex variable ~,. Poles of these functions lie at points 
~,s at which D (~8) = 0, as well as at the roots of polynomial n s (~). 

Roots of D (~,) represent wave numbers of normal waves. Owing to the evenness of 
D (~,) wave numbers of normal waves are symmetric about ~, = 0. For I m k  ~ 0 
D (~,) has no teal roots, and the contour A lies along the real axis, with the exception 
of the neighborhood of the coordinate origin, where, owing to its symmetry about ~ = 0, 
the roots of n 3 (~,) and of D (~) for which 0 ~ arg  ~a ~ ~ remain, respectively, be- 
low and above it. We assume that none of the roots of n 3 (~) coincide with any of the 
roots of D (~) and n 8 ( - -~) .  For I m k  ~ -~- 0 some roots of D (~,) appear on the real 
axis, with the roots from the upper and lower half-planes situated on the positive and 
negative parts of that axis, respectively. Thus in the absence of absorption A is displa- 
ced from the real axis and bypasses positive roots of D (~) from below and negative 
roots from above. Integration contours of the convergent kind had already occurred in 
the analysis of acoustic wave diffraction on plates joined at right angle [2]. 

In the absence of absorption, a certain finite number of roots appear in the medium and 
at walls of the waveguide in the section ( - - k ,  k)  . The number of these increases with 
the waveguide dimensionless width kh. A denumerable set of roots is found along the 
imaginary axis for considerable natural s asymptotically arranged at points -~- i~s / h. 
Finally, there exists a finite set of roots which, with increasing kh ,  convert into those 
roots l~ (~), for which Re Y ~ 0. The number of these roots is determined by the pro= 
perties of differential operators L~ and is independent of the waveguide width kh. Real 
roots lying in segments ( - - o o ,  - - k )  and (k, oo) may be found among these. Such 
roots determine the wave numbers of "boundary layer '  waves whose amplitude decreases 
exponentially with increasing distance from the waveguide walls. For boundary operators 
defined by formulas (1. 6) there axe two such waves. They are associated with the flexo 
ural motions of each wall of the waveguide. 

Integration in (2.12) can be  reduced to summation of a series in residues, which repre- 
sents the superposition of normal waves 

/. x'l ~.x Ix-~l h (~'s' Y0) t2 (~.~, y) (2 .13)  
P l  (x, y) = ~ 2'1 e a D' (~'s) 

8 

~ e~X,(..+~ ) n3 (-- ~8) tl (k,, y0) t~ (~'s, Y) 
P2 (x, y) = 2 s ns (~.,) D' (Xs) 

i ~ eiX, x ~.,t2 (~.,, y) Sx 0., ~) 
Q1 (x, y) = ~ - .  ~ (L) O' (L~ 

~ ~x,~ X,tx 0.,, Y) ¢~ (k, 2) 
Q ' ( x ' Y ) : T ~ e  n, 0.,) D' (~.:) ( D '  (k) = d-~ D (~)) 

where summation is extended to the roots of D (~.) that lie above A.  
Note that the equality 

which indicates the symmet~  of Green's function P with respect to the transposition 
of (x, y) and (xo, Y0). is valid. 
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8.  S o u n d t t y - c o n t t c t  c o n d i t i o a l .  The formal application of the boundary- 
contact operators Ra a, S f  to Qa results in divergent integrals. Passing from integration 
to summation does not eliminate divergencies. Below we present a method for regulariz- 
ing these integrals with the use of the following restrictiom on L,~ and /{13 ~, ,.qaa: 

r f  (X) z~ (X) - r;~ (X) t~ ° (X) = O (X N~) (s. 1) 

*a" (X) n8 ( - x ) -  s f  ( - X )  n8 (~) = O (XN,) (S. 2) 

..°~ (x) n~ ( - t )  - sa °- ( - x )  n8 (x) = o (XN,) (= = t, 2) 
where 

r f  (M = - -  Vral" (~.) + ra8 ~ (X). ra °'~ (M = ~'rax~ (•) + ra, '~ (M 

s f  (x) = ~sa~ • (v) + s~,- (v), s f ~  (~) = xsa,~, ( - v )  + sa, ~ ( - ~ )  

Similar formulas make l x ~ b l e  the regularization of boundary-contact integrals forsemi- 
infinite plates that are continuatiom of each other [1]. and also for plates joined at a 
right angle [2]. 

We restrict our analysis to lrlaXQx and SaXQ1 , since the case of Ra~Q~ and SatQs can 
be investigated similarly. 

Using the identity el 
.x 27r aXr ~ D (X) oX h lt°r; t - -  llr ~ x 

r a l=e va - -  ratl~°e -~a = -t- (raXI~ °e-'th + rp l=e "t ) - -  (3.3) 
l lral-~ /l°r; 1 llr~ 1 + /x°r; t 

we obtain 

1 i ralr'~Xq)x (x~) (3.4) 
RalQI  (0, O) = ~ k na (lrr~X+ lx°r~t) ei°x X dX "4- 

t "  

t ~ (r'~l~e~h+ rall2%-'ch) (r*~'l~ ° - -  lIral) (DI (~2) e'Ok X dX 

~ TnsD (X) (ll°r; I "4- llral) 
We transform contour A in (3.4) into the new contour A I which bypasses the roots of 
expression I / ( X )  rff I (~,) + lx (g) r~ 1 (~,), from above so as not to intersect the roots 
of ns (X) D (g). As the reaalt, the first integral over the contour A t in (3.4) vanishes 
and B~XQ1 (0, 0) reduces to the second integral over the contour A x which, according 
to estimate (3.1), is convergent, and the factor e i°~' which defines the nature of the pas- 
sing to the limit can be omitted. By substituting a series in residues for the integral(3.4) 
we obtain the following expression: 

• trOXlze'th x o -'tit .t o __ rflh) ~,(D (~)) I t , ~ - ~ , .  + r  a l , e  )(rt3lx 
R a t Q t  (0, I 0) 2, s 7nsD' (~') (r; x/x* + ral/t) x'=x I 

where, as in (2. 13), summation is extended over the roots of D (g) that lie above A. 
To regularize SalQl  (0, 0) it is sufficient to separate the even part with respect to 

the variable ~. in the integrand obtained by the application of operator Sa t . This yields 

Sa x Q t (0, O) t -~ ~ {lse'ta[sa x (~,) ns ( - -  ~.) - -  sa t ( - -  k) n a (2~)1 

.t ~,~ (X ~) d~. 
It°e"n[s~ (k) ns ( - -  k) - -  sa x ( - -  k) na (Z,)]} Tns (X) n. (-- X) D (k) 

where the integrals according to estimate (3.2) are convergent. These can also be pre- 
sented in the form of series in residues with the summation extended over the roots of 
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D (~) lying above the contour A,  and also over the roots of  n s ( - -  ~,). 

le 
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A method to construct an asymptotic process to find the axisymmetric vibration 

frequencies of a circular plate is proposed. Cases of symmetric vibrations rela- 
tive to the middle surface (tension-compression vibrations) and of antisymmetric 
(bending) vibrations are considered. 

The asymptotic process for a plate with free endfaces has been studied in de= 

tail under mixed boundary conditions on the side surface. This problem can be 
considered as a model on which the practical convergence of the method proposed 
is analyzed and the accuracy of finding the frequencies at each step of the pro- 
cess is estimated. Furthermore, problems about the natural vibrations of a circu- 
lar plate under other boundary conditions on the side surface, hinged-support and 
rigidly fixing, are solved by the proposed method. 

The purpose of this investigation is to develop a method of determining the 
natural vibration frequencies of a "medium" thickness plate. The question of 
finding the higher frequencies, even for thin plates, as weU as the lowest vibra- 
tion frequencies of medium thickness plates cannot he solved within the frame= 
work of existing applied theories. Hence, it is interesting to forrnulate asequence 
of approximate theories which would permit determination of any, previously as- 
signed, number of the first frequencies with sufficient accuracy for medium thick- 
n~sses, 

I. The problem concerns the natural vibrations of a circular plate under the follow- 
ing boundary conditions: 

~ - - - - x ~ = O ,  z = q - h  (1. 1) 

ur  = x r z = 0 ,  r = a  (1.2) 

Here a is the plate radius and 2h is its thickness. Let us construct the solution in the 

form r ~ = z (1. 3) 
u r ~--- U (13, ~) e ~ t ,  w = W (p, 4) et-t, P = --~-' --K- 

Satisfying the system of Lam~ differential equations and the boundary conditions (1. 1) 


